By Topic

Fault Detection Filter Design for Markovian Jump Singular Systems With Intermittent Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiuming Yao ; Department of Automation, North China Electric Power University, Baoding, P. R. China ; Ligang Wu ; Wei Xing Zheng

This paper addresses the problem of fault detection filter design for discrete-time Markovian jump singular systems with intermittent measurements. The measurement transmission from the plant to the fault detection filter is assumed to be imperfect and a stochastic variable is utilized to model the phenomenon of data missing. Our attention is focused on the design of a fault detection filter such that the residual system is stochastically Markovian jump admissible and satisfies some expected performances. A new necessary and sufficient condition for a class of discrete-time Markovian jump singular systems to be stochastically Markovian jump admissible is proposed in the form of strict linear matrix inequalities. Sufficient conditions are established for the existence of the fault detection filter. Finally, a numerical example is provided to demonstrate the usefulness and applicability of the developed theoretical results.

Published in:

IEEE Transactions on Signal Processing  (Volume:59 ,  Issue: 7 )