By Topic

Advanced Time–Frequency Mutual Information Measures for Condition-Based Maintenance of Helicopter Drivetrains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Coats, D. ; Dept. of Electr. Eng., Univ. of South Carolina, Columbia, SC, USA ; Kwangik Cho ; Yong-June Shin ; Goodman, N.
more authors

A new concept of nonparametric signal detection and classification technique is proposed using mutual information measures in the time-frequency domain. The time-frequency-based self-information and mutual information are defined in terms of the cross time-frequency distribution. Based on time-frequency mutual information theory, this paper presents applications of the proposed technique to real-world vibration data obtained from a dedicated condition-based-maintenance experimental test bed. Baseline, unbalanced, and misaligned experimental settings of helicopter drivetrain bearings and shafts are quantitatively distinguished by the proposed techniques. With imbalance quantifiable by variance in the in-phase mutual information and misalignment quantifiable by variance in the quadrature mutual information developed and presented herein, machine health classification can be accomplished by use of statistical bounding regions.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:60 ,  Issue: 8 )