By Topic

Provider–Customer Coalitional Games

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Singh, C. ; Dept. of Electr. Commun. Eng., Indian Inst. of Sci., Bangalore, India ; Sarkar, S. ; Aram, A.

Efficacy of commercial wireless networks can be substantially enhanced through large-scale cooperation among involved entities such as providers and customers. The success of such cooperation is contingent upon the design of judicious resource allocation strategies that ensure that the individuals' payoffs are commensurate to the resources they offer to the coalition. The resource allocation strategies depend on which entities are decision-makers and whether and how they share their aggregate payoffs. Initially, we consider the scenario where the providers are the only decision-makers and they do not share their payoffs. We formulate the resource allocation problem as a nontransferable payoff coalitional game and show that there exists a cooperation strategy that leaves no incentive for any subset of providers to split from the grand coalition, i.e., the core of the game is nonempty. To compute this cooperation strategy and the corresponding payoffs, we subsequently relate this game and its core to an exchange market setting and its equilibrium, which can be computed by several efficient algorithms. Next, we investigate cooperation when customers are also decision-makers and decide which provider to subscribe to based on whether there is cooperation. We formulate a coalitional game in this setting and show that it has a nonempty core. Finally, we extend the formulations and results to the cases where the payoffs are vectors and can be shared selectively.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:19 ,  Issue: 5 )