Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Euclidean Position Estimation of Static Features Using a Moving Uncalibrated Camera

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Nath, N. ; Takata-Electron., Pontiac, MI, USA ; Dawson, D.M. ; Tatlicioglu, Enver

In this paper, a novel Euclidean position estimation technique using a single uncalibrated camera mounted on a moving platform is developed to asymptotically recover the 3-D Euclidean position of static object features. The position of the moving platform is assumed to be measurable, and a second object with known 3-D Euclidean coordinates relative to the world frame is considered to be available a priori. To account for the unknown camera calibration parameters and to estimate the unknown 3-D Euclidean coordinates, an adaptive least squares estimation strategy is employed based on prediction error formulations and a Lyapunov-type stability analysis. The developed estimator is shown to recover the 3-D Euclidean position of the unknown object features despite the lack of knowledge of the camera calibration parameters. Numerical simulation results along with experimental results are presented to illustrate the effectiveness of the proposed algorithm.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:20 ,  Issue: 2 )