By Topic

Adaptive Gaussian Sum Filter for Nonlinear Bayesian Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gabriel Terejanu ; Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, ; Puneet Singla ; Tarunraj Singh ; Peter D. Scott

A nonlinear filter is developed by representing the state probability density function by a finite sum of Gaussian density kernels whose mean and covariance are propagated from one time-step to the next using linear system theory methods such as extended Kalman filter or unscented Kalman filter. The novelty in the proposed method is that the weights of the Gaussian kernels are updated at every time-step, by solving a convex optimization problem posed by requiring the Gaussian sum approximation to satisfy the Fokker-Planck-Kolmogorov equation for continuous-time dynamical systems and the Chapman-Kolmogorov equation for discrete-time dynamical systems. The numerical simulation results show that updating the weights of different mixture components during propagation mode of the filter not only provides us with better state estimates but also with a more accurate state probability density function.

Published in:

IEEE Transactions on Automatic Control  (Volume:56 ,  Issue: 9 )