By Topic

Optimal Kullback-Leibler Aggregation via Spectral Theory of Markov Chains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Deng, Kun ; Dept. of Mech. Sci. & Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Mehta, P.G. ; Meyn, S.P.

This paper is concerned with model reduction for complex Markov chain models. The Kullback-Leibler divergence rate is employed as a metric to measure the difference between the Markov model and its approximation. For a certain relaxation of the bi-partition model reduction problem, the solution is shown to be characterized by an associated eigenvalue problem. The form of the eigenvalue problem is closely related to the Markov spectral theory for model reduction. This result is the basis of a heuristic proposed for the m-ary partition problem, resulting in a practical recursive algorithm. The results are illustrated with examples.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 12 )