By Topic

Robust adaptive beamforming using worst-case performance optimization via Second-Order Cone programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vorobyov, Sergiy A. ; Department of ECE, McMaster University, Hamilton, Ontario, L8S 4Kl Canada ; Gershman, A.B. ; Zhi-Quan Luo

If the desired signal is present in training snapshots, the adaptive array performance is known to be quite sensitive even to slight mismatches between the presumed and actual signal steering vectors. Such mismatches can occur as a result of environmental nonstationarities, look direction errors, imperfect array calibration or distorted antenna shape, as well as distortions caused by medium inhomogeneities, near-far mismatch, source spreading, and local scattering. The similar type of performance degradation can occur when the signal steering vector is known exactly but the training sample size is small. In this paper, we develop a new approach to robust adaptive beamforming in the presence of an arbitrary unknown signal steering vector mismatch. Our approach is based on the optimization of worst-case performance using Second-Order Cone (SOC) programming. The adaptive beamformer proposed is shown to have a substantially improved robustness as compared to existing algorithms and enjoy simple implementation.

Published in:

Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on  (Volume:3 )

Date of Conference:

13-17 May 2002