By Topic

An Adaptive Feedforward Compensation for Stability Enhancement in Droop-Controlled Inverter-Based Microgrids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Delghavi, M.B. ; Univ. of Western Ontario, London, ON, Canada ; Yazdani, A.

This paper proposes an adaptive feedforward compensation that alters the dynamic coupling between a distributed-resource unit and the host microgrid, so that the robustness of the system stability to droop coefficients and network dynamic uncertainties is enhanced. The proposed feedforward strategy preserves the steady-state effect that the conventional droop mechanism exhibits and, therefore, does not compromise the steady-state power sharing regime of the microgrid or the voltage/frequency regulation. The feedforward compensation is adaptive as it is modified periodically according to the system steady-state operating point which, in turn, is estimated through an online recursive least-square estimation technique. This paper presents a discrete-time mathematical model and analytical framework for the proposed feedforward compensation. The effectiveness of the proposed control is demonstrated through time-domain simulation studies, in the PSCAD/EMTDC software environment, conducted on a detailed switched model of a sample two-unit microgrid.

Published in:

Power Delivery, IEEE Transactions on  (Volume:26 ,  Issue: 3 )