By Topic

Globally Optimal Linear Precoders for Finite Alphabet Signals Over Complex Vector Gaussian Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chengshan Xiao ; Department of Electrical & Computer Engineering, Missouri University of Science & Technology, Rolla, MO, USA ; Yahong Rosa Zheng ; Zhi Ding

We study the design optimization of linear precoders for maximizing the mutual information between finite alphabet input and the corresponding output over complex-valued vector channels. This mutual information is a nonlinear and non-concave function of the precoder parameters, posing a major obstacle to precoder design optimization. Our work presents three main contributions: First, we prove that the mutual information is a concave function of a matrix which itself is a quadratic function of the precoder matrix. Second, we propose a parameterized iterative algorithm for finding optimal linear precoders to achieve the global maximum of the mutual information. The proposed iterative algorithm is numerically robust, computationally efficient, and globally convergent. Third, we demonstrate that maximizing the mutual information between a discrete constellation input and the corresponding output of a vector channel not only provides the highest practically achievable rate but also serves as an excellent criterion for minimizing the coded bit error rate. Our numerical examples show that the proposed algorithm achieves mutual information very close to the channel capacity for channel coding rate under 0.75, and also exhibits a large gain over existing linear precoding and/or power allocation algorithms. Moreover, our examples show that certain existing methods are susceptible to being trapped at locally optimal precoders.

Published in:

IEEE Transactions on Signal Processing  (Volume:59 ,  Issue: 7 )