By Topic

A Fast Wavelet-Based Reconstruction Method for Magnetic Resonance Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. Guerquin-Kern ; Biomedical Imaging Group, École polytechnique fédérale de Lausanne, Lausanne ; M. Haberlin ; K. P. Pruessmann ; M. Unser

In this work, we exploit the fact that wavelets can represent magnetic resonance images well, with relatively few coefficients. We use this property to improve magnetic resonance imaging (MRI) reconstructions from undersampled data with arbitrary k-space trajectories. Reconstruction is posed as an optimization problem that could be solved with the iterative shrinkage/thresholding algorithm (ISTA) which, unfortunately, converges slowly. To make the approach more practical, we propose a variant that combines recent improvements in convex optimization and that can be tuned to a given specific k-space trajectory. We present a mathematical analysis that explains the performance of the algorithms. Using simulated and in vivo data, we show that our nonlinear method is fast, as it accelerates ISTA by almost two orders of magnitude. We also show that it remains competitive with TV regularization in terms of image quality.

Published in:

IEEE Transactions on Medical Imaging  (Volume:30 ,  Issue: 9 )