By Topic

Reducing Mutual Coupling of Closely Spaced Microstrip MIMO Antennas for WLAN Application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ouyang, J. ; Sch. of Electron. Eng., Univ. of Electron. Sci. & Technol. of China (UESTC), Chengdu, China ; Yang, F. ; Wang, Z.M.

An efficient mutual coupling reduction method is introduced in this letter for extremely closely placed dual-element microstrip antennas positioned on a finite-sized ground plane for WLAN MIMO application at 5.8 GHz. High isolation can be achieved through a simple slot structure on the ground between the microstrip antennas. The position, length, and width of the slot have been optimized for maximizing the isolation. It is found that more than 40 dB isolation can be achieved between two parallel microstrip antennas sharing a common ground plane. The space distance of these antennas is 17.5 mm ≈ 0.33λ0 from element center to center (side by side of 1.6 mm ≈ 0.031λ0) when the ground plane size is 0.85λ0 × 0.55λ0. Along with this letter, several prototypes were fabricated, and their performances measured to validate the obtained IE3D moment method-based simulation results.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:10 )