Cart (Loading....) | Create Account
Close category search window
 

Identification of Differentially Expressed Genes for Time-Course Microarray Data Based on Modified RM ANOVA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
ElBakry, O. ; Dept. of Electr. & Comput. Eng., Concordia Univ., Montreal, QC, Canada ; Ahmad, M.O. ; Swamy, M.N.S.

The regulation of gene expression is a dynamic process, hence it is of vital interest to identify and characterize changes in gene expression over time. We present here a general statistical method for detecting changes in microarray expression over time within a single biological group and is based on repeated measures (RM) ANOVA. In this method, unlike the classical F-statistic, statistical significance is determined taking into account the time dependency of the microarray data. A correction factor for this RM F-statistic is introduced leading to a higher sensitivity as well as high specificity. We investigate the two approaches that exist in the literature for calculating the p-values using resampling techniques of gene-wise p-values and pooled p-values. It is shown that the pooled p-values method compared to the method of the gene-wise p-values is more powerful, and computationally less expensive, and hence is applied along with the introduced correction factor to various synthetic data sets and a real data set. These results show that the proposed technique outperforms the current methods. The real data set results are consistent with the existing knowledge concerning the presence of the genes. The algorithms presented are implemented in R and are freely available upon request.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 2 )

Date of Publication:

March-April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.