Cart (Loading....) | Create Account
Close category search window
 

An Efficient Method for Exploring the Space of Gene Tree/Species Tree Reconciliations in a Probabilistic Framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Doyon, J.-P. ; Inst. des Sci. de I'Evolution, Univ. Montpellier II, Montpellier, France ; Hamel, S. ; Chauve, C.

Background. Inferring an evolutionary scenario for a gene family is a fundamental problem with applications both in functional and evolutionary genomics. The gene tree/species tree reconciliation approach has been widely used to address this problem, but mostly in a discrete parsimony framework that aims at minimizing the number of gene duplications and/or gene losses. Recently, a probabilistic approach has been developed, based on the classical birth-and-death process, including efficient algorithms for computing posterior probabilities of reconciliations and orthology prediction. Results. In previous work, we described an algorithm for exploring the whole space of gene tree/species tree reconciliations, that we adapt here to compute efficiently the posterior probability of such reconciliations. These posterior probabilities can be either computed exactly or approximated, depending on the reconciliation space size. We use this algorithm to analyze the probabilistic landscape of the space of reconciliations for a real data set of fungal gene families and several data sets of synthetic gene trees. Conclusion. The results of our simulations suggest that, with exact gene trees obtained by a simple birth-and-death process and realistic gene duplication/loss rates, a very small subset of all reconciliations needs to be explored in order to approximate very closely the posterior probability of the most likely reconciliations. For cases where the posterior probability mass is more evenly dispersed, our method allows to explore efficiently the required subspace of reconciliations.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 1 )

Date of Publication:

Jan.-Feb. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.