Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A Bayesian approach to speech feature enhancement using the dynamic cepstral prior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li Deng ; Microsoft Research, One Microsoft Way, Redmond WA 98052, USA ; Droppo, J. ; Acero, A.

A new Bayesian estimation framework for statistical feature extraction in the form of cepstral enhancement is presented, in which the joint prior distribution is exploited for both static and frame-differential dynamic cepstral parameters in the clean speech model. The conditional minimum mean square error (MMSE) estimator for the clean speech feature is derived using the full posterior probability for clean speech given the noisy observation. The final form of the estimator (for each mixture component) is a weighted sum of the prior information using the static and the dynamic priors separately, and of the prediction using the acoustic distortion model in absence of any prior information. Comprehensive noise-robust speech recognition experiments using the Aurora2 database demonstrate significant improvement in accuracy by incorporating the joint prior, compared with using only the static or dynamic prior and with using no prior.

Published in:

Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on  (Volume:1 )

Date of Conference:

13-17 May 2002