By Topic

Unknown Fault Diagnosis for Nonlinear Hybrid Systems Using Strong State Tracking Particle Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kaijun Zhou ; Sch. of Comput. & Electron. Eng., Hunan Univ. of Commerce, Changsha, China ; Limei Liu

A strong state tracking particle filter (SST-PF) is put forward for unknown fault diagnosis of hybrid system. SST-PF overcomes the problem of sample impoverishment for tracking the state of nonlinear hybrid system by setting permanent transition probabilities from one mode to another. Meanwhile threshold logic of normalization factor based on the statistics is built to detect unknown-faults, which is more accurate and reasonable for tiny mode differences of hybrid system. Simulation experiments are carried out to analyze the effects of SST-PF, and it is shown that our algorithm has strong tracking ability for states and pretty detection ability for both known and unknown faults.

Published in:

Intelligent System Design and Engineering Application (ISDEA), 2010 International Conference on  (Volume:2 )

Date of Conference:

13-14 Oct. 2010