By Topic

Statistical Analysis of VHF-Band Tree Backscattering Using Forest Ground Truth Data and PO Scattering Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kononov, A.A. ; Dept. of Earth & Space Sci., Chalmers Univ. of Technol., Göteborg, Sweden ; Wyholt, A. ; Sandberg, G. ; Ulander, L.M.H.

This paper analyzes the statistical properties of the very high frequency (VHF)-band radar backscattering from coniferous trees by incorporating forest ground truth data into a physical-optics (PO) model that assumes horizontally transmit and receive polarizations and dominant double-bounce scattering from vertical stems standing on an undulating ground surface. The analysis shows that a statistically adequate model for the tree backscattering amplitude can be presented as a mixture of generalized gamma or lognormal distribution, and the mixture model can be reduced to a single density model if the trees with trunk volumes exceeding an appropriate threshold are to be taken into account. The generalized gamma density is shown to provide an appreciably better fit to the exceedance functions associated with the PO model data than that for the lognormal density. The results can be used to design statistically adequate models of forest clutter for VHF synthetic aperture radar systems.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 8 )