Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Thermal Cycling Reliability of Lead-Free Solders (SAC305 and Sn3.5Ag) for High-Temperature Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
George, E. ; Center for Adv. Life Cycle Eng. (CALCE Electron. Products & Syst.), Univ. of Maryland, College Park, MD, USA ; Das, D. ; Osterman, M. ; Pecht, M.

Applications with temperatures higher than the melting point of eutectic tin-lead solder (183°C) require high-melting-point solders. However, they are expensive and not widely available. With the adoption of lead-free legislation, first in Europe and then in many other countries, the electronics industry has transitioned from eutectic tin-lead to lead-free solders that have higher melting points. This higher melting point presents an opportunity for the manufacturers of high-temperature electronics to shift to mainstream lead-free solders. In this paper, ball grid arrays (BGAs), quad flat packages, and surface mount resistors assembled with SAC305 (96.5%Sn+3.0%Ag+0.5Cu) and Sn3.5Ag (96.5%Sn+3.5%Ag) solder pastes were subjected to thermal cycling from -40°C to 185°C. Commercially available electroless nickel immersion gold board finish was compared to custom Sn-based board finish designed for high temperatures. The data analysis showed that the type of solder paste and board finish used did not have an impact on the reliability of BGA solder joints. The failure analysis revealed the failure site to be on the package side of the solder joint. The evolution of intermetallic compounds after thermal cycling was analyzed.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:11 ,  Issue: 2 )