By Topic

A Two-Phase Test Sample Sparse Representation Method for Use With Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yong Xu ; Bio-Comput. Res. Center, Harbin Inst. of Technol., Shenzhen, China ; Zhang, D. ; Jian Yang ; Jing-Yu Yang

In this paper, we propose a two-phase test sample representation method for face recognition. The first phase of the proposed method seeks to represent the test sample as a linear combination of all the training samples and exploits the representation ability of each training sample to determine M “nearest neighbors” for the test sample. The second phase represents the test sample as a linear combination of the determined M nearest neighbors and uses the representation result to perform classification. We propose this method with the following assumption: the test sample and its some neighbors are probably from the same class. Thus, we use the first phase to detect the training samples that are far from the test sample and assume that these samples have no effects on the ultimate classification decision. This is helpful to accurately classify the test sample. We will also show the probability explanation of the proposed method. A number of face recognition experiments show that our method performs very well.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:21 ,  Issue: 9 )
Biometrics Compendium, IEEE