Cart (Loading....) | Create Account
Close category search window
 

Analytical Prediction of Open-Circuit Eddy-Current Loss in Series Double Excitation Synchronous Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bellara, A. ; Groupe de Rech. en Electrotech. et Autom. du Havre, Univ. du Havre, Le Havre, France ; Bali, H. ; Belfkira, R. ; Amara, Y.
more authors

This paper describes an analytical technique for prediction of open circuit eddy-current loss in armature windings and permanent magnets (PM) of series double excitation synchronous machines. First, a 2-D exact analytical solution of open circuit magnetic field distribution in idealized geometry of series double excitation synchronous machine is established. It involves solving Maxwell's equations in stator slots, air gap, PM region, and rotor slots. Then, magnetic vector potential solutions in the stator slots and PM regions are respectively used for prediction of resistance limited eddy currents in armature windings and permanent magnets. This analytical model is then used to estimate eddy-current loss in armature windings and permanent magnets. The validity of the developed model, which is also applicable to conventional designs of permanent-magnet machine, is verified by time-stepped transient finite-element analysis (FEA). The developed model is then used to quantify the effectiveness of segmenting the magnets and armature windings in reducing the eddy-current loss.

Published in:

Magnetics, IEEE Transactions on  (Volume:47 ,  Issue: 9 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.