We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

A Novel Rotate-and-Fire Digital Spiking Neuron and its Neuron-Like Bifurcations and Responses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hishiki, T. ; Dept. of Syst. Innovation, Osaka Univ., Toyonaka, Japan ; Torikai, H.

A novel rotate-and-fire digital spiking neuron is presented. The digital neuron is a wired system of shift registers and thus it is suited to on-chip learning unlike many other analog spiking neuron models. By adjusting the wiring pattern among the registers, the digital neuron can generate spike trains with various spike patterns and can exhibit related bifurcations. A discrete-continuous hybrid map, which describes the neuron dynamics without any approximation, is derived analytically. Using the hybrid map, it is shown that the digital spiking neuron can mimic typical bifurcation phenomena and various nonlinear responses of biological neurons.

Published in:

Neural Networks, IEEE Transactions on  (Volume:22 ,  Issue: 5 )