By Topic

Nash Equilibrium Problems With Scaled Congestion Costs and Shared Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huibing Yin ; Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Shanbhag, U.V. ; Mehta, P.G.

We consider a class of convex Nash games where strategy sets are coupled across agents through a common constraint and payoff functions are linked via a scaled congestion cost metric. A solution to a related variational inequality problem provides a set of Nash equilibria characterized by common Lagrange multipliers for shared constraints. While this variational problem may be characterized by a non-monotone map, it is shown to admit solutions, even in the absence of restrictive compactness assumptions on strategy sets. Additionally, we show that the equilibrium is locally unique both in the primal space as well as in the larger primal-dual space. The existence statements can be generalized to accommodate a piecewise-smooth congestion metric while affine restrictions, surprisingly, lead to both existence and global uniqueness guarantees. In the second part of the technical note, we discuss distributed computation of such equilibria in monotone regimes via a distributed iterative Tikhonov regularization (ITR) scheme. Application to a class of networked rate allocation games suggests that the ITR schemes perform better than their two-timescale counterparts.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 7 )