By Topic

Room-Temperature GaAs/AlGaAs Quantum Cascade Lasers Grown by Metal–Organic Vapor Phase Epitaxy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Krysa, Andrey B. ; EPSRC Nat. Centre for III-V Technol., Univ. of Sheffield, Sheffield, UK ; Revin, D.G. ; Commin, J.P. ; Atkins, C.N.
more authors

We demonstrate λ ~ 9 μm GaAs/Al0.45Ga0.55As quantum cascade lasers (QCLs) operating up to 320 K. Metal- organic vapor phase epitaxy has been used throughout for the growth of the devices. Detailed comparison has been carried out for the QCLs with various waveguides and grown on (100) GaAs substrates with different miscut angles towards (111)A. Introduction of InGaP cladding layers into the optical waveguide significantly improves the QCL performance due to a better optical confinement and lower waveguide losses compared with the GaAs-based waveguide. A 20- μm-wide 4-mm-long device with high reflectivity coating on the laser back facet demonstrates room-temperature pulsed output power of 220 mW and a lowered threshold current density of 6.5 kA/cm2.

Published in:

Photonics Technology Letters, IEEE  (Volume:23 ,  Issue: 12 )