By Topic

View point evaluation and streamline filtering for flow visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Teng-Yok Lee ; Department of Computer Science and Engineering, The Ohio State University, USA ; Oleg Mishchenko ; Han-Wei Shen ; Roger Crawfis

Visualization of flow fields with geometric primitives is often challenging due to occlusion that is inevitably introduced by 3D streamlines. In this paper, we present a novel view-dependent algorithm that can minimize occlusion and reveal important flow features for three dimensional flow fields. To analyze regions of higher importance, we utilize Shannon's entropy as a measure of vector complexity. An entropy field in the form of a three dimensional volume is extracted from the input vector field. To utilize this view-independent complexity measure for view-dependent calculations, we introduce the notion of a maximal entropy projection (MEP) framebuffer, which stores maximal entropy values as well as the corresponding depth values for a given viewpoint. With this information, we develop a view-dependent streamline selection algorithm that can evaluate and choose streamlines that will cause minimum occlusion to regions of higher importance. Based on a similar concept, we also propose a viewpoint selection algorithm that works hand-in-hand with our streamline selection algorithm to maximize the visibility of high complexity regions in the flow field.

Published in:

2011 IEEE Pacific Visualization Symposium

Date of Conference:

1-4 March 2011