By Topic

Robust Lattice Alignment for K -User MIMO Interference Channels With Imperfect Channel Knowledge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Huang Huang ; ECE Department, The Hong Kong University of Science and Technology, Hong Kong ; Vincent K. N. Lau ; Yinggang Du ; Sheng Liu

In this paper, we consider a robust lattice alignment design for K-user quasi-static multiple-input multiple-output (MIMO) interference channels with imperfect channel knowledge. With random Gaussian inputs, the conventional interference alignment (IA) method has the feasibility problem when the channel is quasi-static. On the other hand, structured lattices can create structured interference as opposed to the random interference caused by random Gaussian symbols. The structured interference space can be exploited to transmit the desired signals over the gaps. However, the existing alignment methods on the lattice codes for quasi-static channels either require infinite signal-to-noise ratio (SNR) or symmetric interference channel coefficients. Furthermore, perfect channel state information (CSI) is required for these alignment methods, which is difficult to achieve in practice. In this paper, we propose a robust lattice alignment method for quasi-static MIMO interference channels with imperfect CSI at all SNR regimes, and a two-stage decoding algorithm to decode the desired signal from the structured interference space. We derive the achievable data rate based on the proposed robust lattice alignment method, where the design of the precoders, decorrelators, scaling coefficients and interference quantization coefficients is jointly formulated as a mixed integer and continuous optimization problem. The effect of imperfect CSI is also accommodated in the optimization formulation, and hence the derived solution is robust to imperfect CSI. We also design a low complex iterative optimization algorithm for our robust lattice alignment method by using the existing iterative IA algorithm that was designed for the conventional IA method. Numerical results verify the advantages of the proposed robust lattice alignment method compared with the time-division multiple-access (TDMA), two-stage maximum-likelihood (ML) decoding, generalized Han-Kobayashi (HK), distributive IA- - and conventional IA methods in the literature.

Published in:

IEEE Transactions on Signal Processing  (Volume:59 ,  Issue: 7 )