By Topic

Neural Network Assisted Computationally Simple PI ^\lambda D ^\mu Control of a Quadrotor UAV

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Efe, M.O. ; Dept. of Electr. & Electron. Eng., Bahcesehir Univ., Istanbul, Turkey

The applications of Unmanned Aerial Vehicles (UAVs) require robust control schemes that can alleviate disturbances such as model mismatch, wind disturbances, measurement noise, and the effects of changing electrical variables, e.g., the loss in the battery voltage. Proportional Integral and Derivative (PID) type controller with noninteger order derivative and integration is proposed as a remedy. This paper demonstrates that a neural network can be trained to provide the coefficients of a Finite Impulse Response (FIR) type approximator, that approximates to the response of a given analog PIλDμ controller having time varying action coefficients and differintegration orders. The results obtained show that the neural network aided FIR type controller is very successful in driving the vehicle to prescribed trajectories accurately. The response of the proposed scheme is highly similar to the response of the target PIλDμ controller and the computational burden of the proposed scheme is very low.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:7 ,  Issue: 2 )