By Topic

A Low-Power Electronic Nose Signal-Processing Chip for a Portable Artificial Olfaction System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kea-Tiong Tang ; Department of Electrical Engineering, National Tsing Hua University, Taiwan ; Shih-Wen Chiu ; Meng-Fan Chang ; Chih-Cheng Hsieh
more authors

The bulkiness of current electronic nose (E-Nose) systems severely limits their portability. This study designed and fabricated an E-Nose signal-processing chip by using TSMC 0.18-μ m 1P6M complementary metal-oxide semiconductor technology to overcome the need to connect the device to a personal computer, which has traditionally been a major stumbling block in reducing the size of E-Nose systems. The proposed chip is based on a conductive polymer sensor array chip composed of multiwalled carbon nanotubes. The signal-processing chip comprises an interface circuit, an analog-to-digital converter, a memory module, and a microprocessor embedded with a pattern-recognition algorithm. Experimental results have verified the functionality of the proposed system, in which the E-Nose signal-processing chip successfully classified three odors, carbon tetrachloride (CCl4), chloroform (CHCl3), and 2-Butanone (MEK), demonstrating its potential for portable applications. The power consumption of this signal-processing chip was maintained at a very low 2.81 mW using a 1.8-V power supply, making it highly suitable for integration as an electronic nose system-on-chip.

Published in:

IEEE Transactions on Biomedical Circuits and Systems  (Volume:5 ,  Issue: 4 )