By Topic

A Component-Wise Analysis of Constructible Match Cost Functions for Global Stereopsis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daniel Neilson ; Univ. of Saskatchewan, Saskatoon, SK, Canada ; Yee-Hong Yang

Match cost functions are common elements of every stereopsis algorithm that are used to provide a dissimilarity measure between pixels in different images. Global stereopsis algorithms incorporate assumptions about the smoothness of the resulting distance map that can interact with match cost functions in unpredictable ways. In this paper, we present a large-scale study on the relative performance of a structured set of match cost functions within several global stereopsis frameworks. We compare 272 match cost functions that are built from component parts in the context of four global stereopsis frameworks with a data set consisting of 57 stereo image pairs at three different variances of synthetic sensor noise. From our analysis, we infer a set of general rules that can be used to guide derivation of match cost functions for use in global stereopsis algorithms.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:33 ,  Issue: 11 )