Cart (Loading....) | Create Account
Close category search window
 

Trajectory Learning for Activity Understanding: Unsupervised, Multilevel, and Long-Term Adaptive Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Morris, B.T. ; Dept. of Electr. & Comput. Eng., Univ. of California, San Diego, La Jolla, CA, USA ; Trivedi, M.M.

Society is rapidly accepting the use of video cameras in many new and varied locations, but effective methods to utilize and manage the massive resulting amounts of visual data are only slowly developing. This paper presents a framework for live video analysis in which the behaviors of surveillance subjects are described using a vocabulary learned from recurrent motion patterns, for real-time characterization and prediction of future activities, as well as the detection of abnormalities. The repetitive nature of object trajectories is utilized to automatically build activity models in a 3-stage hierarchical learning process. Interesting nodes are learned through Gaussian mixture modeling, connecting routes formed through trajectory clustering, and spatio-temporal dynamics of activities probabilistically encoded using hidden Markov models. Activity models are adapted to small temporal variations in an online fashion using maximum likelihood regression and new behaviors are discovered from a periodic retraining for long-term monitoring. Extensive evaluation on various data sets, typically missing from other work, demonstrates the efficacy and generality of the proposed framework for surveillance-based activity analysis.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 11 )

Date of Publication:

Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.