By Topic

Bayesian Estimation of Beta Mixture Models with Variational Inference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhanyu Ma ; Sound & Image Process. Lab., KTH - R. Inst. of Technol., Stockholm, Sweden ; Arne Leijon

Bayesian estimation of the parameters in beta mixture models (BMM) is analytically intractable. The numerical solutions to simulate the posterior distribution are available, but incur high computational cost. In this paper, we introduce an approximation to the prior/posterior distribution of the parameters in the beta distribution and propose an analytically tractable (closed form) Bayesian approach to the parameter estimation. The approach is based on the variational inference (VI) framework. Following the principles of the VI framework and utilizing the relative convexity bound, the extended factorized approximation method is applied to approximate the distribution of the parameters in BMM. In a fully Bayesian model where all of the parameters of the BMM are considered as variables and assigned proper distributions, our approach can asymptotically find the optimal estimate of the parameters posterior distribution. Also, the model complexity can be determined based on the data. The closed-form solution is proposed so that no iterative numerical calculation is required. Meanwhile, our approach avoids the drawback of overfitting in the conventional expectation maximization algorithm. The good performance of this approach is verified by experiments with both synthetic and real data.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:33 ,  Issue: 11 )