By Topic

Sensor Placement Algorithms for Fusion-Based Surveillance Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Xiangmao Chang ; State Key Lab. of Networking & Switching Technol., Beijing Univ. of Posts & Telecommun., Beijing, China ; Rui Tan ; Guoliang Xing ; Zhaohui Yuan
more authors

Mission-critical target detection imposes stringent performance requirements for wireless sensor networks, such as high detection probabilities and low false alarm rates. Data fusion has been shown as an effective technique for improving system detection performance by enabling efficient collaboration among sensors with limited sensing capability. Due to the high cost of network deployment, it is desirable to place sensors at optimal locations to achieve maximum detection performance. However, for sensor networks employing data fusion, optimal sensor placement is a nonlinear and nonconvex optimization problem with prohibitively high computational complexity. In this paper, we present fast sensor placement algorithms based on a probabilistic data fusion model. Simulation results show that our algorithms can meet the desired detection performance with a small number of sensors while achieving up to seven-fold speedup over the optimal algorithm.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:22 ,  Issue: 8 )