By Topic

Parameter-Aware I/O Management for Solid State Disks (SSDs)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jaehong Kim ; Dept. of Comput. Sci., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea ; Sangwon Seo ; Dawoon Jung ; Jin-Soo Kim
more authors

Solid state disks (SSDs) have many advantages over hard disk drives, including better reliability, performance, durability, and power efficiency. However, the characteristics of SSDs are completely different from those of hard disk drives with rotating disks. To achieve the full potential performance improvement with SSDs, operating systems or applications must understand the critical performance parameters of SSDs to fine-tune their accesses. However, the internal hardware and software organizations vary significantly among SSDs and, thus, each SSD exhibits different parameters which influence the overall performance. In this paper, we propose a methodology which can extract several essential parameters affecting the performance of SSDs, and apply the extracted parameters to SSD systems for performance improvement. The target parameters of SSDs considered in this paper are 1) the size of read/write unit, 2) the size of erase unit, 3) the size of read buffer, and 4) the size of write buffer. We modify two operating system components to optimize their operations with the SSD parameters. The experimental results show that such parameter-aware management leads to significant performance improvements for large file accesses by performing SSD-specific optimizations.

Published in:

Computers, IEEE Transactions on  (Volume:61 ,  Issue: 5 )