We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

An Oblivious Spanning Tree for Single-Sink Buy-at-Bulk in Low Doubling-Dimension Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Srinivasagopalan, S. ; Comput. Sci. Dept., Louisiana State Univ., Baton Rouge, LA, USA ; Busch, C. ; Iyengar, S.S.

We consider the problem of constructing a single spanning tree for the single-sink buy-at-bulk network design problem for doubling-dimension graphs. We compute a spanning tree to route a set of demands along a graph G to or from a designated sink node. The demands could be aggregated at (or symmetrically distributed to) intermediate edges where the fusion cost is specified by a nonnegative concave function f. We describe a novel approach for developing an oblivious spanning tree in the sense that it is independent of the number and location of data sources (or demands) and cost function at the edges. We present a deterministic, polynomial-time algorithm for constructing a spanning tree in low doubling-dimension graphs that guarantees a log3 D-approximation over the optimal cost, where D is the diameter of the graph G. With a constant fusion-cost function, our spanning tree gives an O(log3 D)-approximation for every Steiner tree that includes the sink. We also provide a Ω(log n) lower bound for any oblivious tree in low doubling-dimension graphs. To our knowledge, this is the first paper to propose a single spanning tree solution to the single-sink buy-at-bulk network design problem (as opposed to multiple overlay trees).

Published in:

Computers, IEEE Transactions on  (Volume:61 ,  Issue: 5 )