By Topic

Computing a Most Probable Delay Constrained Path: NP-Hardness and Approximation Schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ying Xiao ; Sch. of Comput. Sci., Univ. of Oklahoma, Norman, OK, USA ; Thulasiraman, K. ; Xi Fang ; Dejun Yang
more authors

Delay constrained path selection is concerned with finding a source-to-destination path so that the delay of the path is within a given delay bound. When the network is modeled by a directed graph where the delay of a link is a random variable with a known mean and a known variance, the problem becomes that of computing a most probable delay constrained path. In this paper, we present a comprehensive theoretical study of this problem. First, we prove that the problem is NP-hard. Next, for the case where there exists a source-to-destination path with a delay mean no more than the given delay bound, we present a fully polynomial time approximation scheme. In other words, for any given constant ε such that 0 <; ε <; 1, our algorithm computes a path whose probability of satisfying the delay constraint is at least (1-ε) times the probability that the optimal path satisfies the delay constraint, with a time complexity bounded by a polynomial in the number of network nodes and 1/ε. Finally, for the case where any source-to-destination path has a delay mean larger than the given delay bound, we present a simple approximation algorithm with an approximation ratio bounded by the square root of the hop count of the optimal path.

Published in:

Computers, IEEE Transactions on  (Volume:61 ,  Issue: 5 )