Cart (Loading....) | Create Account
Close category search window
 

Toward a Minimal Representation of Affective Gestures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Glowinski, D. ; Dept. of Commun. Comput. & Syst. Sci., Univ. of Genoa, Geneva, Italy ; Dael, N. ; Camurri, A. ; Volpe, G.
more authors

This paper presents a framework for analysis of affective behavior starting with a reduced amount of visual information related to human upper-body movements. The main goal is to individuate a minimal representation of emotional displays based on nonverbal gesture features. The GEMEP (Geneva multimodal emotion portrayals) corpus was used to validate this framework. Twelve emotions expressed by 10 actors form the selected data set of emotion portrayals. Visual tracking of trajectories of head and hands were performed from a frontal and a lateral view. Postural/shape and dynamic expressive gesture features were identified and analyzed. A feature reduction procedure was carried out, resulting in a 4D model of emotion expression that effectively classified/grouped emotions according to their valence (positive, negative) and arousal (high, low). These results show that emotionally relevant information can be detected/measured/obtained from the dynamic qualities of gesture. The framework was implemented as software modules (plug-ins) extending the EyesWeb XMI Expressive Gesture Processing Library and is going to be used in user centric, networked media applications, including future mobiles, characterized by low computational resources, and limited sensor systems.

Published in:

Affective Computing, IEEE Transactions on  (Volume:2 ,  Issue: 2 )

Date of Publication:

April-June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.