Cart (Loading....) | Create Account
Close category search window
 

Joint Design of Spectrum Sensing and Channel Access in Cognitive Radio Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
El-Sherif, A.A. ; Dept. of Electr. Eng., Alexandria Univ., Alexandria, Egypt ; Liu, K.J.R.

Spectrum sensing is an essential functionality of cognitive radio networks. However, the effect of errors in the spectrum sensing process on the performance of the multiple access layer of both primary and secondary networks has not gained much attention. This paper aims at bridging the gap between the study of spectrum sensing and the multiple access of cognitive radio networks. To achieve this goal we pose and answer the question how the spectrum sensing errors affects the performance of cognitive radio networks from a multiple access protocol design point of view. The negative effects of the spectrum sensing errors on the throughput of both primary and secondary networks are characterized through queuing theory analysis of both networks. To alleviate these negative effects a novel joint design of the spectrum sensing and channel access mechanisms is proposed. This design is based on the observation that, in a binary hypothesis testing problem, the value of the test statistics could be used as a confidence measure for the test outcome. Therefore, this value will be used to define different channel access probabilities for secondary users. Results reveal a significant performance improvement in the maximum stable throughput of both primary and secondary networks by virtue of the proposed technique.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:10 ,  Issue: 6 )

Date of Publication:

June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.