By Topic

Single-Link Flexible Manipulator Control Accommodating Passivity Violations: Theory and Experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Forbes, J.R. ; Univ. of Toronto Inst. for Aerosp. Studies, Toronto, ON, Canada ; Damaren, C.J.

The robust control of a system which is nominally passive, but experiences a passivity violation is considered in this paper. Specifically, we utilize the hybrid passivity and finite gain stability theorem to robustly control a single-link flexible manipulator experiment. This system is nominally passive, but passivity is destroyed by, for example, sensor dynamics. The hybrid theorem is specifically applicable to such a scenario. We review and develop further the hybrid passivity and finite gain stability theorem in a linear time-invariant, single-input-single-output context. Calculation of the various passivity and finite gain parameters that classify a system as hybrid is discussed. In the interest of developing a hybrid controller that is optimal in some sense, we pose a numerical optimization problem which is constrained by the hybrid passivity and finite gain stability theorem. The numerical optimization objective function seeks to have a hybrid controller mimic a nominal controller. Experimental results successfully demonstrate tip-based feedback control of a single-link flexible manipulator.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:20 ,  Issue: 3 )