By Topic

A Multiple-Kernel Fuzzy C-Means Algorithm for Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Long Chen ; Dept. of Electr. & Comput. Eng., Univ. of Texas, San Antonio, TX, USA ; C. L. Philip Chen ; Mingzhu Lu

In this paper, a generalized multiple-kernel fuzzy C-means (FCM) (MKFCM) methodology is introduced as a framework for image-segmentation problems. In the framework, aside from the fact that the composite kernels are used in the kernel FCM (KFCM), a linear combination of multiple kernels is proposed and the updating rules for the linear coefficients of the composite kernel are derived as well. The proposed MKFCM algorithm provides us a new flexible vehicle to fuse different pixel information in image-segmentation problems. That is, different pixel information represented by different kernels is combined in the kernel space to produce a new kernel. It is shown that two successful enhanced KFCM-based image-segmentation algorithms are special cases of MKFCM. Several new segmentation algorithms are also derived from the proposed MKFCM framework. Simulations on the segmentation of synthetic and medical images demonstrate the flexibility and advantages of MKFCM-based approaches.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:41 ,  Issue: 5 )