By Topic

Multiscale Electrothermal Modeling of Nanostructured Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Romano, G. ; Dept. of Electron. Eng., Univ. of Rome Tor Vergata, Rome, Italy ; Di Carlo, A.

In this study, we develop an electro-thermal model to investigate heating and heat dissipation in nanostructured devices. The heating is computed by a drift-diffusion simulation, which accounts for the dissipative transport of charge carriers. The heat dissipation model is based on the phonon Boltzmann transport equation (PBTE). Application of the electrothermal model to a truncated-pyramid-shaped GaN dot embedded in an AlGaN nanocolumn reveals the existence of mesoscopic effects such as a hotspot across the quantum dot and thermal boundary resistances. We enhance the computational efficiency of the thermal model by implementing a coupled PBTE/Fourier model. This method, based on the domain partitioning, provides the same maximum temperature as that computed by the simple PBTE model, resulting, therefore, a powerful scheme for capture local heating effect with relatively low computational effort. Details about the numerical implementation are also provided.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:10 ,  Issue: 6 )