By Topic

An Advanced Cooperative Path Prediction Algorithm for Safety Applications in Vehicular Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lytrivis, P. ; Inst. of Commun. & Comput. Syst., Nat. Tech. Univ. of Athens, Athens, Greece ; Thomaidis, G. ; Tsogas, M. ; Amditis, A.

Vehicular ad hoc networks (VANETs) are in the heart of current and future automotive research. Most of the current vehicular safety applications are based on sensors installed on the vehicle, e.g., radars and laserscanners. Due to the evolution of wireless networks, there is a tendency to exploit the cooperation among vehicles to enhance road safety through the related applications. Path prediction of a driver's own vehicle and other vehicles is crucial for road safety. Path prediction can assist the driver in having an enhanced perception of the road environment and of the intention of other neighboring drivers. In this paper, an advanced cooperative path prediction algorithm is presented. This algorithm gathers position, velocity, acceleration, heading, and yaw rate measurements from all connected vehicles to calculate their future paths. In addition, map data with regard to the road geometry and, in particularly, the road curvature are used to enhance the path prediction algorithm. Comparative results of the path prediction, with and without wireless communications, are discussed. In addition, the algorithm is adapted for use in the emergency-electronic-brake-lights application. The results of this adaptation are also presented. This paper is another contribution in highlighting the advantages and, at the same time, the challenges of using communications among road users.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:12 ,  Issue: 3 )