By Topic

Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dahl, G.E. ; Dept. of Comput. Sci., Univ. of Toronto, Toronto, ON, Canada ; Dong Yu ; Li Deng ; Acero, A.

We propose a novel context-dependent (CD) model for large-vocabulary speech recognition (LVSR) that leverages recent advances in using deep belief networks for phone recognition. We describe a pre-trained deep neural network hidden Markov model (DNN-HMM) hybrid architecture that trains the DNN to produce a distribution over senones (tied triphone states) as its output. The deep belief network pre-training algorithm is a robust and often helpful way to initialize deep neural networks generatively that can aid in optimization and reduce generalization error. We illustrate the key components of our model, describe the procedure for applying CD-DNN-HMMs to LVSR, and analyze the effects of various modeling choices on performance. Experiments on a challenging business search dataset demonstrate that CD-DNN-HMMs can significantly outperform the conventional context-dependent Gaussian mixture model (GMM)-HMMs, with an absolute sentence accuracy improvement of 5.8% and 9.2% (or relative error reduction of 16.0% and 23.2%) over the CD-GMM-HMMs trained using the minimum phone error rate (MPE) and maximum-likelihood (ML) criteria, respectively.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:20 ,  Issue: 1 )