Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

High-Bandwidth Graded-Index Plastic Optical Fiber With Low-Attenuation, High-Bending Ability, and High-Thermal Stability for Home-Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Asai, M. ; Inst. for Solid State Physic, Univ. of Tokyo, Chiba, Japan ; Inuzuka, Y. ; Koike, K. ; Takahashi, S.
more authors

The graded-index plastic optical fiber (GI-POF) is expected to be a communication medium for the next-generation optical home network because of its simple-to-use connection, installation, and high bandwidth. In spite of the expectation, we had a problem that a typical GI-POF using poly (methyl methacrylate) (PMMA) had high transmission loss in the expected communication wavelength band (VCSEL: 670-680 nm) for home networks; the required values of being below 200 dB/km could not be achieved. We, therefore, propose poly (2, 2, 2-trichloroethyl methacrylate) (PTCEMA) as a base material for the GI-POF. A PTCEMA-based GI-POF was fabricated, and its characteristics were evaluated. The PTCEMA is a prominent material in terms of its transparency and heat-resistant property. Our results demonstrated that the fabricated fiber surpassed the desired characteristics for the home network pertaining to attenuation and heat resistance. Specifically, the attenuation in the wavelength band (670-680 nm) was 104-136 dB/km, and the glass transition temperature (Tg) was 102°C in the core center where the Tg was at its lowest. Moreover, we confirmed that our PTCEMA-based GI-POF had sufficient mechanical strength and low bending loss. These results indicate that our novel GI-POF can be a candidate for home networks.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 11 )