Cart (Loading....) | Create Account
Close category search window
 

Modeling the charge decay mechanism in nitrogen-rich silicon nitride films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ren, Yongling ; Centre for Sustainable Energy Systems, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 0200, Australia ; Weber, Klaus J. ; Nursam, Natalita M.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3571291 

The stability of negative charge in nitrogen-rich silicon nitride films deposited by plasma-enhanced chemical vapor deposition is investigated by analyzing the influence of storage temperature, postdeposition thermal annealing, and the presence of a tunnel oxide. The results are compared to a charge decay model. Comparison of experimental and modeled results indicates that (i) the tunnel oxide is almost entirely responsible for charge retention in samples with an oxide-nitride-oxide (ONO) structure, with the trap properties playing an insignificant role; (ii) thermionic emission over the tunnel oxide barrier is the limiting charge decay mechanism; and (iii) thermal annealing of the films at 800 °C leads to an increase in the oxide-nitride barrier height by ∼0.22 eV, which results in a significant increase in the charge stability. Annealed ONO samples are predicted to maintain a negative charge density of >5×1012 cm-2 for well in excess of 100 years at a storage temperature of 100 °C.

Published in:

Applied Physics Letters  (Volume:98 ,  Issue: 12 )

Date of Publication:

Mar 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.