By Topic

A Scalable High-Performance Virus Detection Processor Against a Large Pattern Set for Embedded Network Security

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chieh-Jen Cheng ; Dept. of Comput. Sci. & Inf. Eng., Nat. Chung Cheng Univ., Chiayi, Taiwan ; Chao-Ching Wang ; Wei-Chun Ku ; Tien-Fu Chen
more authors

Contemporary network security applications generally require the ability to perform powerful pattern matching to protect against attacks such as viruses and spam. Traditional hardware solutions are intended for firewall routers. However, the solutions in the literature for firewalls are not scalable, and they do not address the difficulty of an antivirus with an ever-larger pattern set. The goal of this work is to provide a systematic virus detection hardware solution for network security for embedded systems. Instead of placing entire matching patterns on a chip, our solution is a two-phase dictionary-based antivirus processor that works by condensing as much of the important filtering information as possible onto a chip and infrequently accessing off-chip data to make the matching mechanism scalable to large pattern sets. In the first stage, the filtering engine can filter out more than 93.1% of data as safe, using a merged shift table. Only 6.9% or less of potentially unsafe data must be precisely checked in the second stage by the exact-matching engine from off-chip memory. To reduce the impact of the memory gap, we also propose three enhancement algorithms to improve performance: 1) a skipping algorithm; 2) a cache method; and 3) a prefetching mechanism.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 5 )