By Topic

Reduced Power Consumption in Superconducting Electronics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ortlepp, T. ; RSFQ Design Group, Ilmenau Univ. of Technol., Ilmenau, Germany ; Wetzstein, O. ; Engert, S. ; Kunert, J.
more authors

Rapid single flux quantum (RSFQ) electronics is based on the Josephson junction as an active switching element. In standard RSFQ circuits its switching energy is much lower than the static power consumption caused by the resistive current distribution network. Due to this thermal heating of the chip, the maximum number of junctions on a single chip is limited to about 1 million. The frequency-dependent contribution to power dissipation from junction switchings is only about 2 percent of the static one. This fact limits the direct construction of VLSI systems for high-performance computing as well as small-scale circuit applications in the vicinity of ultra-sensitive detectors or even quantum circuits. We present an assessment of different approaches for reducing the static power consumption by investigating the potential of inductive bias distribution networks as well as reduced critical currents. We analyse the operation stability of simple digital circuits with 5 times smaller critical currents at 4.2 K. The combination of the reduced critical currents and inductive biasing can provide digital superconductive circuits with significantly reduced static power consumption.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:21 ,  Issue: 3 )