By Topic

Spectral Measure of Structural Robustness in Complex Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Wu ; Coll. of Inf. Syst. & Manage., Nat. Univ. of Defense Technol., Changsha, China ; Mauricio Barahona ; Yue-Jin Tan ; Hong-Zhong Deng

We introduce the concept of natural connectivity as a measure of structural robustness in complex networks. The natural connectivity characterizes the redundancy of alternative routes in a network by quantifying the weighted number of closed walks of all lengths. This definition leads to a simple mathematical formulation that links the natural connectivity to the spectrum of a network. The natural connectivity can be regarded as an average eigenvalue that changes strictly monotonically with the addition or deletion of edges. We calculate both analytically and numerically the natural connectivity of three typical networks: regular ring lattices, random graphs, and random scale-free networks. We also compare the proposed natural connectivity to other structural robustness measures within a scenario of edge elimination and demonstrate that the natural connectivity provides sensitive discrimination of structural robustness that agrees with our intuition.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:41 ,  Issue: 6 )