Cart (Loading....) | Create Account
Close category search window

Getting More From the Semiconductor Test: Data Mining With Defect-Cluster Extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ooi, M.P. ; Monash Univ., Petaling Jaya, Malaysia ; Joo, E.K.J. ; Ye Chow Kuang ; Demidenko, S.
more authors

High-volume production data shows that dies, which failed probe test on a semiconductor wafer, have a tendency to form certain unique patterns, i.e., defect clusters. Identifying such clusters is one of the crucial steps toward improvement of the fabrication process and design for manufacturing. This paper proposes a new technique for defect-cluster identification that combines data mining with a defect-cluster extraction using a Segmentation, Detection, and Cluster-Extraction algorithm. It offers high defect-extraction accuracy, without any significant increase in test time and cost.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:60 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.