Cart (Loading....) | Create Account
Close category search window

Wireless Measurement of RFID IC Impedance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bjorninen, T. ; Dept. of Electron., Tampere Univ. of Technol., Rauma, Finland ; Lauri, M. ; Ukkonen, L. ; Ritala, R.
more authors

Accurate knowledge of the input impedance of a radio-frequency identification (RFID) integrated circuit (IC) at its wake-up power is valuable as it enables the design of a performance-optimized tag for a specific IC. However, since the IC impedance is power dependent, few methods exist to measure it without advanced equipment. We propose and demonstrate a wireless method, based on electromagnetic simulation and threshold power measurement, applicable to fully assembled RFID tags, to determine the mounted IC's input impedance in the absorbing state, including any parasitics arising from the packaging and the antenna-IC connection. The proposed method can be extended to measure the IC's input impedance in the modulating state as well.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:60 ,  Issue: 9 )

Date of Publication:

Sept. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.