Cart (Loading....) | Create Account
Close category search window
 

Segmentation of Hyperspectral Images via Subtractive Clustering and Cluster Validation Using One-Class Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bilgin, G. ; Dept. of Comput. Eng., Yildiz Tech. Univ., Istanbul, Turkey ; Erturk, S. ; Yildirim, T.

This paper presents an unsupervised hyperspectral image segmentation with a new subtractive-clustering-based similarity segmentation and a novel cluster validation method using one-class support vector (SV) machine (OC-SVM). An estimation of the correct number of clusters is an important task in hyperspectral image segmentation. The proposed cluster validity measure is based on the power of spectral discrimination (PWSD) measure and utilizes the advantage of the inherited cluster contour definition feature of OC-SVM. Hence, this novel cluster validity method is referred to as SV-PWSD. SVs found by OC-SVM are located at the minimum distance to the hyperplane in the feature space and at the arbitrarily shaped cluster contours in the input space. SV-PWSD guides the segmentation/clustering process to find the optimal number of clusters in hyperspectral data. Because of the high computational load of subtractive clustering and OC-SVM, a subset of the image (only ground-truth data) is initially used in the clustering and validation phases. Then, it is proposed to use K-nearest neighbor classification, with the already clustered subset being used as training data, to project the initial clustering results onto the entire data set.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 8 )

Date of Publication:

Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.