By Topic

Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shimeng Yu ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA ; Wong, H.-S.P.

A physics-based compact device model is developed for the conducting-bridge random-access memory (CBRAM). By considering the dependence of ion migration velocity on the electric field, the vertical and lateral growth/dissolution dynamics for the metallic filament are investigated. Both time-dependent transient and “quasi-static” switching characteristics of the CBRAM are captured. Moreover, the I-V characteristics of the CBRAM can be reproduced. By further considering the compliance effect on the size of the metallic filament, the on-state resistance modulation is fitted, and the multilevel capability is included in the model. This model is verified by the experiments data from the Ag/Ge0.3Se0.7-based CBRAM cells. This model reveals that experimentally measured switching parameters such as the threshold voltage and the cell resistance are dynamic quantities that depend on the programming duration time. The time-dependent switching process of the CBRAM is quantified, thus paving the way for a compact SPICE model for circuit simulation.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 5 )