By Topic

An incremental machine learning mechanism applied to robot navigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
N. N. Kharma ; Dept. of Electr. Eng., Imperial Coll. of Sci., Technol. & Med., London, UK ; M. Alwan ; P. Y. K. Cheung

We apply an incremental machine learning algorithm to the problem of robot navigation. The learning algorithm is applied to a simple robot simulation to automatically induce a list of declarative rules. The rules are pruned in order to remove the rules that are operationally useless. The final set is initially used to control the robot navigating an obstacle-free path planned in a polygonal environment with satisfactory results. Crisp conditions used in the rules are then replaced by fuzzy conditions fashioned by a human expert. The new set of rules are shown to produce better results

Published in:

Intelligent Information Systems, 1996., Australian and New Zealand Conference on

Date of Conference:

18-20 Nov 1996